Questions

Q1.

Figure 2 shows a sketch of part of the curve *C* with equation $y = x \ln x$, x > 0

The line *I* is the normal to *C* at the point P(e, e)

The region *R*, shown shaded in Figure 2, is bounded by the curve *C*, the line *I* and the *x*-axis.

Show that the exact area of *R* is $Ae^2 + B$ where *A* and *B* are rational numbers to be found.

(10)

(Total for question = 10 marks)

Q2.

Figure 4

Figure 4 shows a sketch of part of the curve *C* with equation

$$y = \frac{x^2 \ln x}{3} - 2x + 5, \quad x > 0$$

The finite region *S*, shown shaded in Figure 4, is bounded by the curve *C*, the line with equation x = 1, the *x*-axis and the line with equation x = 3

The table below shows corresponding values of x and y with the values of y given to 4 decimal places as appropriate.

x	1	1.5	2	2.5	3
у	3	2.3041	1.9242	1.9089	2.2958

(a) Use the trapezium rule, with all the values of y in the table, to obtain an estimate for the area of S, giving your answer to 3 decimal places.

(3)

(b) Explain how the trapezium rule could be used to obtain a more accurate estimate for the area of S.

(1)

(c) Show that the exact area of S can be written in the form \overline{b} + lnc, where a, b and c are integers to be found.

а

(6)

(In part c, solutions based entirely on graphical or numerical methods are not acceptable.)

(Total for question = 10 marks)

<u>Mark Scheme</u>

Q1.

Question	Scheme	Marks	AOs
	$C: y = x \ln x; l \text{ is a normal to } C \text{ at } P(e, e)$		
	Let x_{λ} be the x-coordinate of where l cuts the x-axis		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \ln x + x \left(\frac{1}{x}\right) \{= 1 + \ln x\}$	M1	2.1
	$\frac{dx}{dx} = \max + x \left(\frac{x}{x}\right) \{-1 + \max\}$		1.1b
	$x = \mathbf{e}, m_T = 2 \implies m_N = -\frac{1}{2} \implies y - \mathbf{e} = -\frac{1}{2}(x - \mathbf{e})$ $y = 0 \implies -\mathbf{e} = -\frac{1}{2}(x - \mathbf{e}) \implies x = \dots$	M1	3.1a
	<i>l</i> meets <i>x</i> -axis at $x = 3e$ (allow $x = 2e + e \ln e$)	A1	1.1b
	{Areas:} either $\int_1^e x \ln x dx = \begin{bmatrix} \dots \end{bmatrix}_1^e = \dots$ or $\frac{1}{2}((\text{their } x_A) - e)e$	M1	2.1
	$\left\{\int x \ln x \mathrm{d}x = \right\} \frac{1}{2} x^2 \ln x - \int \frac{1}{x} \left(\frac{x^2}{2}\right) \{\mathrm{d}x\}$	M1	2.1
	$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 $	dM1	1.1b
	$\left\{ = \frac{1}{2}x^{2}\ln x - \int \frac{1}{2}x \left\{ dx \right\} \right\} = \frac{1}{2}x^{2}\ln x - \frac{1}{4}x^{2}$		1.1b
	Area $(R_1) = \int_1^e x \ln x dx = [\dots]_1^e = \dots;$ Area $(R_2) = \frac{1}{2}((\text{their } x_A) - e)e$ and so, Area $(R) = \text{Area}(R_1) + \text{Area}(R_2) \{=\frac{1}{4}e^2 + \frac{1}{4} + e^2\}$	M1	3.1a
	Area $(R) = \frac{5}{4}e^2 + \frac{1}{4}$	A1	1.1b
		(10)	•

	Notes for Question
M1:	Differentiates by using the product rule to give $\ln x + x$ (their g'(x)), where g(x) = $\ln x$
A1:	Correct differentiation of $y = x \ln x$, which can be un-simplified or simplified
M1:	Complete strategy to find the x coordinate where their normal to C at $P(e, e)$ meets the x-axis
	i.e. Sets $y=0$ in $y-e=m_N(x-e)$ to find $x=$
Note:	m_T is found by using calculus and $m_N \neq m_T$
A1:	<i>l</i> meets <i>x</i> -axis at $x = 3e$, allowing un-simplified values for <i>x</i> such as $x = 2e + elne$
Note:	Allow $x = awrt 8.15$
M1:	Scored for either
	• Area under curve $= \int_{1}^{e} x \ln x dx = \begin{bmatrix} \dots \end{bmatrix}_{1}^{e} = \dots$, with limits of e and 1 and some attempt to
	substitute these and subtract
	• or Area under line $=\frac{1}{2}((\text{their } x_A) - e)e$, with a valid attempt to find x_A
Ml:	Integration by parts the correct way around to give $Ax^2 \ln x - \int B\left(\frac{x^2}{x}\right) \{dx\}; A \neq 0, B > 0$
dM1:	dependent on the previous M mark
	Integrates the second term to give $\pm \lambda x^2$; $\lambda \neq 0$
A1:	$\frac{1}{2}x^2\ln x - \frac{1}{4}x^2$
Ml:	Complete strategy of finding the area of R by finding the sum of two key areas. See scheme.
A1:	$\frac{5}{4}e^2 + \frac{1}{4}$
Note:	Area(R_2) can also be found by integrating the line <i>l</i> between limits of e and their x_A
	i.e. Area $(R_2) = \int_{e}^{\text{their } x_4} \left(-\frac{1}{2}x + \frac{3}{2}e \right) dx = \left[\dots \right]_{e}^{\text{their } x_4} = \dots$
Note:	Calculator approach with no algebra, differentiation or integration seen:
	 Finding <i>l</i> cuts through the x-axis at awrt 8.15 is 2nd M1 2nd A1
	Therefore, a maximum of 4 marks out of the 10 available.
Ture.	 Finding <i>l</i> cuts through the <i>x</i>-axis at awrt 8.15 is 2nd M1 2nd A1 Finding area between curve and the <i>x</i>-axis between x = 1 and x = e to give awrt 2.10 is 3rd M1 Using the above information (must be seen) to apply Area(R) = 2.0972+7.3890 = 9.4862 is final M1

Q2.

Question	Scheme	Marks	AOs
(a)	Uses or implies $h = 0.5$	B1	1.1b
	For correct form of the trapezium rule =	M1	1.1b
	$\frac{0.5}{2} \{3 + 2.2958 + 2(2.3041 + 1.9242 + 1.9089)\} = 4.393$	A1	1.1b
		(3)	
(b)	 Any valid statement reason, for example Increase the number of strips Decrease the width of the strips Use more trapezia 	B1	2.4
		(1)	
(c)	For integration by parts on $\int x^2 \ln x dx$	M1	2.1
	$=\frac{x^3}{3}\ln x - \int \frac{x^2}{3} dx$	A1	1.1b
	$\int -2x + 5 \mathrm{d}x = -x^2 + 5x (+c)$	B1	1.1b
	All integration attempted and limits used Area of $S = \int_{1}^{3} \frac{x^2 \ln x}{3} - 2x + 5 dx = \left[\frac{x^3}{9} \ln x - \frac{x^3}{27} - x^2 + 5x\right]_{x=1}^{x=3}$	М1	2.1
	Uses correct ln laws, simplifies and writes in required form	M1	2.1
	Area of $S = \frac{28}{27} + \ln 27$ (<i>a</i> = 28, <i>b</i> = 27, <i>c</i> = 27)	A1	1.1b
		(6)	
		(10 n	narks)

Г

Notes:	
(a)	
B1:	States or uses the strip width $h = 0.5$. This can be implied by the sight of $\frac{0.5}{2} \{\}$ in the
	trapezium rule
M1:	For the correct form of the bracket in the trapezium rule. Must be y values rather than x
	values {first y value+last y value+2×(sum of other y values)}
A1:	4.393
(b)	
B1:	See scheme
(c)	
M1:	Uses integration by parts the right way around.
	Look for $\int x^2 \ln x dx = Ax^3 \ln x - \int Bx^2 dx$
A1:	$\frac{x^3}{3}\ln x - \int \frac{x^2}{3} \mathrm{d}x$
B1:	Integrates the $-2x + 5$ term correctly $= -x^2 + 5x$
M1:	All integration completed and limits used
M1:	Simplifies using $\ln \text{law}(s)$ to a form $\frac{a}{b} + \ln c$
A1:	Correct answer only $\frac{28}{27} + \ln 27$
