Questions

Q1.

Figure 2
Figure 2 shows a sketch of part of the curve C with equation $y=x \ln x, \quad x>0$
The line $/$ is the normal to C at the point $P(\mathrm{e}, \mathrm{e})$
The region R, shown shaded in Figure 2, is bounded by the curve C, the line I and the x-axis. Show that the exact area of R is $A \mathrm{e}^{2}+B$ where A and B are rational numbers to be found.

Q2.

Figure 4
Figure 4 shows a sketch of part of the curve C with equation

$$
y=\frac{x^{2} \ln x}{3}-2 x+5, \quad x>0
$$

The finite region S, shown shaded in Figure 4, is bounded by the curve C, the line with equation $x=1$, the x-axis and the line with equation $x=3$

The table below shows corresponding values of x and y with the values of y given to 4 decimal places as appropriate.

x	1	1.5	2	2.5	3
y	3	2.3041	1.9242	1.9089	2.2958

(a) Use the trapezium rule, with all the values of y in the table, to obtain an estimate for the area of S, giving your answer to 3 decimal places.
(b) Explain how the trapezium rule could be used to obtain a more accurate estimate for the area of S.
(c) Show that the exact area of S can be written in the form $\frac{a}{b}+\operatorname{Inc}$, where a, b and c are integers to be found.
(In part c, solutions based entirely on graphical or numerical methods are not acceptable.)

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
	$C: y=x \ln x ; l$ is a normal to C at $P(\mathrm{e}, \mathrm{e})$ Let x_{4} be the x-coordinate of where l cuts the x-axis		
	$\underline{\mathrm{d} y}=\ln x+x(\underline{1})$	M1	2.1
	$\frac{9}{\mathrm{~d} x}=\ln x+x\left(\frac{1}{x}\right)$	A1	1.1 b
	$\begin{gathered} x=\mathrm{e}, m_{T}=2 \Rightarrow m_{N}=-\frac{1}{2} \Rightarrow y-\mathrm{e}=-\frac{1}{2}(x-\mathrm{e}) \\ y=0 \Rightarrow-\mathrm{e}=-\frac{1}{2}(x-\mathrm{e}) \Rightarrow x=\ldots \end{gathered}$	M1	3.1a
	l meets x-axis at $x=3 \mathrm{e}$ (allow $x=2 \mathrm{e}+\mathrm{elne}$)	A1	1.1 b
	\{Areas: either $\int_{1}^{e} x \ln x \mathrm{dx}=[\ldots]_{1}^{e}=\ldots$ or $\frac{1}{2}\left(\right.$ (their $\left.\left.x_{A}\right)-\mathrm{e}\right) \mathrm{e}$	M1	2.1
	$\left\{\int x \ln x \mathrm{~d} x=\right\} \frac{1}{2} x^{2} \ln x-\int \frac{1}{x} \cdot\left(\frac{x^{2}}{2}\right)\{\mathrm{d} x\}$	M1	2.1
	$\frac{1}{2} x^{2} \ln x-\left\{\frac{1}{2} x\{d x\}=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}\right.$	dM1	1.1 b
	$\left\{\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x\{\mathrm{dx}\}\right\}=\frac{x^{2}}{} x^{2} \ln x-\frac{x^{2}}{4}$	A1	1.1 b
	$\begin{aligned} \text { Area }\left(R_{1}\right)=\int_{1}^{e} x \ln x \mathrm{dx} x & =[\ldots]_{1}^{e}=\ldots ; \text { Area }\left(R_{2}\right)=\frac{1}{2}\left(\left(\text { their } x_{A}\right)-\mathrm{e}\right) \mathrm{e} \\ \text { and so, Area }(R) & =\text { Area }\left(R_{1}\right) \end{aligned}+\text { Area }\left(R_{2}\right) \quad\left\{=\frac{1}{4} \mathrm{e}^{2}+\frac{1}{4}+\mathrm{e}^{2}\right\},$	M1	3.1a
	Area $(R)=\frac{5}{4} \mathrm{e}^{2}+\frac{1}{4}$	A1	1.1 b
		(10)	

Notes for Question	
M1:	Differentiates by using the product rule to give $\ln x+x\left(\right.$ their $\left.\mathrm{g}^{\prime}(x)\right)$, where $\mathrm{g}(x)=\ln x$
A1:	Correct differentiation of $y=x \ln x$, which can be un-simplified or simplified
M1:	Complete strategy to find the x coordinate where their normal to C at $P(\mathrm{e}, \mathrm{e})$ meets the x-axis i.e. Sets $y=0$ in $y-\mathrm{e}=m_{M}(x-\mathrm{e})$ to find $x=\ldots$
Note:	m_{T} is found by using calculus and $m_{N} \neq m_{T}$
Al:	l meets x-axis at $x=3 \mathrm{e}$, allowing un-simplified values for x such as $x=2 \mathrm{e}+\mathrm{e}$ lne
Note:	Allow $x=$ awit 8.15
M1:	Scored for either - Area under curve $=\int_{1}^{e} x \ln x d x=[\ldots]_{1}^{e}=\ldots$, with limits of e and 1 and some attempt to substitute these and subtract - or Area under line $=\frac{1}{2}\left(\left(\right.\right.$ their $\left.\left.x_{A}\right)-\mathrm{e}\right)$ e, with a valid attempt to find x_{A}
M1:	Integration by parts the correct way around to give $A x^{2} \ln x-\int B\left(\frac{x^{2}}{x}\right)\{\mathrm{dx}\} ; A \neq 0, B>0$
dM1:	dependent on the previous M mark Integrates the second term to give $\pm \lambda x^{2} ; \lambda \neq 0$
Al:	$\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}$
M1:	Complete strategy of finding the area of R by finding the sum of two key areas. See scheme.
Al:	$\frac{5}{4} \mathrm{e}^{2}+\frac{1}{4}$
Note:	Area $\left(R_{2}\right)$ can also be found by integrating the line l between limits of e and their x_{A} i.e. $\operatorname{Area}\left(R_{2}\right)=\int_{e}^{\operatorname{tai} x_{t}}\left(-\frac{1}{2} x+\frac{3}{2} \mathrm{e}\right) \mathrm{d} x=[\ldots]_{e}^{\operatorname{tin} x_{x}}=\ldots$
Note:	Calculator approach with no algebra, differentiation or integration seen: - Finding l cuts through the x-axis at awrt 8.15 is $2^{\text {nd }}$ M1 $2^{\text {nd }}$ A1 - Finding area between curve and the x-axis between $x=1$ and $x=\mathrm{e}$ to give awrt 2.10 is $3^{\text {rd }}$ M1 - Using the above information (must be seen) to apply $\operatorname{Area}(R)=2.0972 \ldots+7.3890 \ldots=9.4862 \ldots$ is final M1 Therefore, a maximum of 4 marks out of the 10 available.

Q2.

Question	Scheme	Marks	AOs
(a)	Uses or implies $h=0.5$	B1	1.1b
	For correct form of the trapezium rule $=$	M1	1.1b
	$\frac{0.5}{2}\{3+2.2958+2(2.3041+1.9242+1.9089)\}=4.393$	A1	1.1b
		(3)	
(b)	Any valid statement reason, for example - Increase the number of strips - Decrease the width of the strips - Use more trapezia	B1	2.4
		(1)	
(c)	For integration by parts on $\int x^{2} \ln x \mathrm{dx}$	M1	2.1
	$=\frac{x^{3}}{3} \ln x-\int \frac{x^{2}}{3} \mathrm{~d} x$	A1	1.1b
	$\int-2 x+5 \mathrm{~d} x=-x^{2}+5 x \quad(+c)$	B1	1.1b
	All integration attempted and limits used Area of $S=\int_{1}^{3} \frac{x^{2} \ln x}{3}-2 x+5 \mathrm{~d} x=\left[\frac{x^{3}}{9} \ln x-\frac{x^{3}}{27}-x^{2}+5 x\right]_{x-1}^{x-3}$	M1	2.1
	Uses correct \ln laws, simplifies and writes in required form	M1	2.1
	Area of $S=\frac{28}{27}+\ln 27 \quad(a=28, b=27, c=27)$	A1	1.1b
		(6)	
(10 marks)			

Notes:

(a)

B1: States or uses the strip width $h=0.5$. This can be implied by the sight of $\frac{0.5}{2}\{\ldots\}$ in the trapezium rule
M1: For the correct form of the bracket in the trapezium rule. Must be y values rather than x values $\{$ first y value + last y value $+2 \times$ (sum of other y values) $\}$
A1: 4.393
(b)

B1: See scheme
(c)

M1: Uses integration by parts the right way around
Look for $\int x^{2} \ln x \mathrm{~d} x=A x^{3} \ln x-\int B x^{2} \mathrm{~d} x$
A1: $\quad \frac{x^{3}}{3} \ln x-\int \frac{x^{2}}{3} \mathrm{~d} x$
B1: Integrates the $-2 x+5$ term correctly $=-x^{2}+5 x$
M1: All integration completed and limits used
M1: Simplifies using \ln law(s) to a form $\frac{a}{b}+\ln c$
A1: Correct answer only $\frac{28}{27}+\ln 27$

